Dynamics and computational simulation of COVID-19 in Paraguay in February 2021

Authors

Keywords:

Simulation, COVID-19, SIR, Vensim.

Abstract

The 2019 coronavirus disease is a worldwide concern, its spread is related to the characteristics of the virus and the taking of government, public health and social habits. Using mathematical and computational tools help to have an overview of the current situation and a future of this problem. In order to reflect behavior of this disease through simulation with system dynamics and evaluating the number of active infections, deaths and recoveries in Paraguay in the month of February 2021, the Vensim software was released by applying a modification of the basic model of epidemiology of Kermack and McKendrick who consider the population of susceptible, processed and recovered. The simulation of this dynamic has presented differences of 758 active cases, 216 deaths and 37009 recovered with respect to what was reported, with active cases being the most important approximation of the study.

Downloads

Download data is not yet available.

Author Biographies

Silverio Andrés Quintana Arrúa, Universidad Nacional de Asunción - Facultad de Ciencias Exactas y Naturales , Departamento de Biotecnología

Departamento de Biotecnología.
Docente de Bioinformática
Tutor del Programa de Iniciación Científica

Rodrigo Espinoza, Universidad Nacional de Asunción - Facultad de Ciencias Exactas y Naturales , Departamento de Biotecnología

Departamento de Biotecnología.
Egresado de la Licenciatura en Biotecnología
Tutorando del Programa de Iniciación Científica

Jorge Rojas, Universidad Nacional de Asunción - Facultad de Ciencias Exactas y Naturales , Departamento de Biotecnología

Departamento de Biotecnología.
Estudiante de la Licenciatura en Biotecnología
Tutorando del Programa de Iniciación Científica

Samuel Gabaglio

Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine. 
Estudiante de Doctorado 

References

1. Troyano Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020: A Global and Regional Approach by Epidemiological Week. Viruses. 2021; 13(2): 243.

2. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of

SARS-CoV-2. Nat Med. 2020; 26(4): 450-2.

3. Organización Panamericana de la Salud/Organización Mundial de la Salud. Actualización epidemiológica: Enfermedad por Coronavirus (COVID-19). 9 de febrero de 2021. [Internet]. Washington, D.C.: OPS/OMS; 2021. [citado 18/07/2022]. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/53378/EpiUpdate9February2021_spa.pdf?sequence=2&isAllowed=y

4. Paraguay. Ministerio de salud pública y bienestar social. Fase 3 de cuarentena inteligente significa mayor compromiso. [Internet]. Paraguay: MSPBS; 2021. [citado 14/06/2021]. Disponible en: https://www.mspbs.gov.py/portal/21101/fase-3-de-cuarentena-inteligente-significa-mayor-compromiso.html

5. Katul GG, Mrad A, Bonetti S, Manoli G, Parolari AJ. Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics. PLoS One. 2020; 15(9): e0239800-e22.

6. Venkatasen M, Mathivanan SK, Jayagopal P, Mani P, Rajendran S, Subramaniam U, et al. Forecasting of the SARS-CoV-2 epidemic in India using SIR model, flatten curve and herd immunity. J Ambient Intell Humaniz Comput. 2020; 15: 1-9.

7. Paraguay. Ministerio de salud pública y Bienestar Social. Coronavirus / COVID-19 en Paraguay. [Internet]. Paraguay: MSPBS; 2021. [citado 10/06/2021]. Disponible en: https://www.mspbs.gov.py/reporte-covid19.html

8. Ibarra Vega D. Lockdown, one, two, none, or smart. Modeling containing covid-19 infection. A conceptual model. Sci Total Environ. 2020; 730: 138917-23.

9. Ridenhour B, Kowalik JM, Shay DK. El número reproductivo básico (R0): consideraciones para su aplicación en la salud póblica. Am J Public Health. 2018; 108(Suppl 6): S455–65.

10. Seyed Alinaghi S, Abbasian L, Solduzian M, Ayoobi Yazdi N, Jafari F, Adibimehr A, et al. Predictors of the prolonged recovery period in COVID-19 patients: a cross-sectional study. Eur J Med Res. 2021; 26(1): 41.

11. Paraguay. Ministerio de salud pública y binestar social. ¡Controla regularmente tu presión arterial! [Internet]. Paraguay: MSPBS; 2021. [citado 16/06/2021]. Disponible en: https://www.mspbs.gov.py/portal-19108/iexclcontrola-regularmente-tu-presion-arterial.html

12. Salazar M, Barochiner J, Espeche W, Ennis I. COVID-19, hipertensión y enfermedad cardiovascular. Hipertens y Riesgo Vasc. 2020; 37(4): 176–80.

13. Delgado JA. Modelo dinámico de la pandemia de COVID19. Sanid. Mil. 2021; 77(1): 7-16.

14. Niwa M, Hara Y, Sengoku S, Kodama K. Effectiveness of Social Measures against COVID-19 Outbreaks in Selected Japanese Regions Analyzed by System Dynamic Modeling. Int J Environ Res Public Health. 2020; 17(17): 6238–50.

15. Malik M, Tahir MJ, Jabbar R, Ahmed A, Hussain R. Self-medication during Covid-19 pandemic: challenges and opportunities. Drugs Ther Perspect. 2020; 36(12): 565-7.

Published

2022-07-19

How to Cite

1.
Quintana Arrúa SA, Espinoza R, Rojas J, Gabaglio S. Dynamics and computational simulation of COVID-19 in Paraguay in February 2021. RM [Internet]. 2022 Jul. 19 [cited 2025 Jun. 3];26(4):e2501. Available from: https://revmultimed.sld.cu/index.php/mtm/article/view/2501

Issue

Section

ARTÍCULOS ORIGINALES