In vitro antioxidant capacity of ethanolic extracts of fruits of Luffa cylindrica L. Roem

Authors

  • Quirino Arias Cedeño Centro de Estudios de Química Aplicada. Facultad de Ciencias Técnicas. Universidad de Granma. Bayamo. Granma, Cuba.
  • Lázaro Eduardo Valdés Izaguirre Departamento de Medicina Veterinaria. Facultad de Ciencias Agropecuarias. Universidad de Granma. Bayamo. Granma, Cuba.
  • Nolberto Remón Zamora Centro Politécnico Agropecuario Armando Mestre. Bayamo. Granma, Cuba.
  • Jorge Ramírez Arzuaga Centro de Estudios de Química Aplicada. Facultad de Ciencias Técnicas. Universidad de Granma. Bayamo. Granma, Cuba.

Keywords:

antioxidant capacity, Luffa cylindrica, phytochemical screening. Cucurbitaceae

Abstract

Luffa cylindrica L. Roem, propagated in Cuba in a wild way, commonly known as scouring pad has been little researched and interesting medicinal properties are attributed to it. The objective of the work was to determine the in vitro antioxidant capacity of the ethanolic extracts of the fruit of this plant. The extracts were prepared by maceration in 70 % ethanol and the total antioxidant capacity determined by ultraviolet - visible spectrophotometry. The evaluated ethanolic extracts of the Luffa cylindrica L. fruit, both in the green and dry mature states, possess antioxidant activity. The phytochemical composition of the extracts was explored qualitatively by phytochemical screening and it was possible to detect the presence of triterpenes, polyphenols, anthocyanidins, and abundant coumarins in both extracts; as well as saponins and glycosides in the extract of the immature green fruit, metabolites that could be responsible for the antioxidant capacity shown.

Downloads

Download data is not yet available.

References

1. Sies H, Berndt C, Jones DP. Oxidative Stress. Ann Rev Biochem [Internet]. 2017 [citado 14 Ene 2018]; 86:715-48. Disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurev-biochem-061516-045037.

2. Zheng Y, Zhang G, Chen Z, Zeng Q. Relationship between Type 2 Diabetes and inflammation diseases: Cohort study in chinese adults. Iran J Public Health [Internet]. 2015 [citado 14 Ene 2018]; 44(8):1045–52. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645724/.

3. Lopez-Candales A, Hernández-Burgos PM, Hernandez-Suarez DF, Harris D. Linking chronic inflammation with cardiovascular disease: From normal aging to the metabolic syndrome. J Nat Sci [Internet]. 2017 [citado 14 Ene 2018]; 3(4):e341. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488800/.

4. Su F, Bai F, Zhang Z. Inflammatory cytokines and Alzheimer’s disease: A review from the perspective of genetic polymorphisms. Neurosci Bull [Internet]. 2016 [citado 14 Ene 2018]; 32(5):469–80. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563762/.

5. Korniluk A, Koper O, Kemona H, Dymicka-Piekarska V. From inflammation to cancer. Ir J Med Sci [Internet]. 2017 [citado 14 Ene 2018]; 186(1):57–62. Disponible en: https://link.springer.com/article/10.1007/s11845-016-1464-0.

6. Valenzuela CV, Pérez PM. Actualización en el uso de antioxidantes naturales derivados de frutas y verduras para prolongar la vida útil de la carne y productos cárnicos. Rev Chil Nutr [Internet]. 2016 [citado 14 Ene 2018]; 43(2):188-95. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-75182016000200012&lang=pt.

7. García BET, Saldaña AB, Saldaña LG. El estrés oxidativo y los antioxidantes en la prevención del cáncer. Rev Hab Cien Méd [Internet]. 2012 [citado 14 Ene 2018]; 12(2):187-96. Disponible en: http://scielo.sld.cu/scielo.php?pid=S1729-519X2013000200005&script=sci_arttext&tlng=pt.

8. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zhen J, et al. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int J Mol Sci [Internet]. 2017 [citado 2 Jun 2018]; 18(1): 96. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297730/.

9. Roig-Mesa JT. Plantas Medicinales, Aromáticas o Venenosas de Cuba. 2ª ed. La Habana: Ed. Ciencia y Técnica; 1974.

10. Sutharshana V. Protective role of Luffa cylindrica. J. Pharm Sci & Res [Internet]. 2013 [citado 14 Ene 2018]; 5(9):184-6. Disponible en: https://pdfs.semanticscholar.org/da40/54a72422a4bff6d2d0e781a6cc6fea5a804b.pdf.

11. Du Q, Xu Y, Li L, Zhao Y, Jerz G, Winterhalter P. Antioxidant Constituents in the Fruits of Luffa cylindrica (L.) Roem. J Agric Food Chem [Internet]. 2006 [citado 14 Ene 2018]; 54(12): 4186-90. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jf0604790.

12. Rawat I, Sharma D, Chandra GH. Antioxidant and anti-inflammatory potential of some dietary cucurbits. Oxid Antioxid Med Sci [Internet]. 2014 [citado 14 Ene 2018]; 3(1):65-72. Disponible en: https://www.ejmanager.com/mnstemps/65/65-1385120181.pdf?t=1535370194.

13. Prieto P; Pineda M; Aguilar M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry [Internet]. 1999[citado 14 Ene 2018], 269:337–341. Disponible en: https://www.sciencedirect.com/science/article/pii/S0003269799940198?via%3Dihub.

14. Thangaraj P. Preliminary Phytochemical Studies. En: Pharmacological Assays of Plant-Based Natural Products. Cham (Suiza): Springer International Publishing; 2016. p. 15–20.

Published

2018-09-05

How to Cite

1.
Arias Cedeño Q, Valdés Izaguirre LE, Remón Zamora N, Ramírez Arzuaga J. In vitro antioxidant capacity of ethanolic extracts of fruits of Luffa cylindrica L. Roem. RM [Internet]. 2018 Sep. 5 [cited 2025 Jun. 2];22(4):738-4. Available from: https://revmultimed.sld.cu/index.php/mtm/article/view/921

Issue

Section

ARTÍCULOS ORIGINALES