Employment of data mining to predict moderate to severe migraine disability

Authors

  • Andrés José Quesada Vázquez Hospital General Universitario Carlos M. de Céspedes. Bayamo. Granma

Keywords:

migraine disorders, migraine with aura, trends, data mining, disabled person.

Abstract

Migraine occupies the first place as a cause of disability among neurological diseases, it is the third cause of disability in the population under 50 years old and the seventh cause of years of life lived with disability in the world. This study was made to build self-validated diagnostic algorithms that allow the prediction of moderate to severe disability due to migraine with acceptable accuracy. Data mining techniques were applied to the database with the information of the 505 patients with migraine diagnosed in the multicenter cross-sectional study of the Bayamo headache project. Seven algorithms (JRip, NNge, J48, Id3, Naive Bayes, Bayesian Logistic Regression and IBk) belonging to several paradigms of artificial intelligence were used. JRip and J48 algorithms predicted the risk of developing moderate to severe migraine disability to 93.7 % and 91.8 % of patients respectively; with an area under the ROC curve of 0.899 and 0.920. The most important factor was having had more than 20 days with headache in the last three months, followed in order of importance, the poor quality of sleep and coexisting headaches. It was concluded that the decision-making tree and the decision rules allowed us to predict the risk of developing moderate to severe disability due to migraine

Downloads

Download data is not yet available.

References

1. Baigi K, Stewart WF. Headache and migraine: a leading cause of absenteeism [Internet]. En: Lotti M, Bleecker ML, eds. Handbook of Clinical Neurology. [s.n.]: Elsevier; 2015. Vol. 131.p. 447-63. (3rd series). Disponible en: http://www.sciencedirect.com/science/article/pii/B9780444626271000251?via%3Dihub.

2. Global Burden Disease 2015, Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet [Internet]. 2016 [citado 10 Dic 2016]; 388:1545–602. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055577/pdf/main.pdf.

3. Steiner TJ, Stovner LJ, Vos T. GBD 2015: migraine is the third cause of disability in under 50s. J Headache Pain [Internet]. 2016 [citado 15 Feb 2017]; 17:104. Disponible en: https://link.springer.com/content/pdf/10.1186%2Fs10194-016-0699-5.pdf.

4. Steiner TJ, Stovner LJ, Birbeck GL. Migraine: The seventh disabler. Cephalalgia. 2013; 33(5): 289-90. doi: 10.1177/0333102412473843.

5. Diener HC, Steiner TJ, Tepper SJ. Migraine the forgotten epidemic: development of the EHF/WHA Rome Declaration on Migraine. J Headache Pain. 2006; 7:433–37. doi 10.1007/s10194-006-0349-4.

6. Ange A. Data Mining avec Weka. Projet de Maitrise Geénie Informatique. [Internet]. Montréal : Polytechnique Montréal ; 2015 [citado 20 Oct 2016]. Disponible en: https://www.researchgate.net/publication/274314023_Data_Mining_avec_Weka.

7. Zhang LM, Dong Z, Yu SY. Migraine in the era of precision medicine. Ann Transl Med. [Internet]. 2016 [citado 20 Dic 2016]; 4(6):105. Disponible en: http://atm.amegroups.com/article/view/9616/10256.

8. van Walraven C, Colman I. Migraineurs were reliably identified using administrative data. J of Clin Epidemiol [Internet]. 2016. [citado 10 Dic 2016]; 71: 68e75. Disponible en: http://dx.doi.org/10.1016/j.jclinepi.2015.09.007.

9. Pagán J, De Orbe MI, Gago A, Sobrado M, Risco-Martín JL, Vivancos Mora J, et al. Robust and accurate modeling approaches for migraine per-patient prediction from ambulatory data. Sensors [Internet]. 2015. [citado 10 Dic 2016]; 15: 15419-15442. doi: 10.3390/s150715419.

10. Quesada Vázquez AJ, Contreras Maure LJ, Pérez Joa AS, Mendoza Acosta O, Álvarez Aliaga A, Frómeta Guerra A. Prevalencia y características clínico epidemiológicas de la migraña en Bayamo. Multimed [Internet]. 2017 [citado 14 Ago 2017]; 21(4): 414-29. Disponible en: http://www.revmultimed.sld.cu/index.php/mtm/article/download/557/914.

11. Headache Classification Subcommittee of the IHS. The internacional classification of headache disorders, 2nd ed. Cephalalgia [Internet]. 2004 [citado 21 Nov 2005]; Suppl 1: S24. Disponible en: http://journals.sagepub.com/toc/cepa/24/1_suppl.

12. Lipton RB, Steward WF, Sawyer J, Edmeads JG. Clinical utility of an instrument assessing migraine disability. The Migraine Disability Assessment (MIDAS) questionnary. Headache [Internet]. 2001 [citado 10 Ene 2016]; 41:854-61. Disponible en: http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.2001.01156.x/pdf.

13. Timarán Pereira SR, Hernández Arteaga I, Caicedo Zambrano SJ, Hidalgo Troya A, Alvarado Pérez JC. El proceso de descubrimiento de conocimiento en bases de datos [Internet]. En: Descubrimiento de patrones de desempeño académico con árboles de decisión en las competencias genéricas de la formación profesional. Bogotá: Ediciones Universidad Cooperativa de Colombia; 2016. p. 63-86. [citado 11 Nov 2016]. Disponible en: http://ediciones.ucc.edu.co/index.php/ucc/catalog/book/36.

14. Shaik MM, Hassan NB, Tan HL, Gan SH. Quality of life and migraine disability among female migraine patients in a tertiary hospital in Malaysia. Biomed Res Int [Internet]. 2015 [citado 30 Dic 2016]; 2015: 523717. Disponible en: https://www.hindawi.com/journals/bmri/2015/523717/.

15. Walters AB, Hamer JD, Smitherman TA. Sleep disturbance and affective comorbidity among episodic migraineurs. Headache [Internet]. 2014 [citado 10 Ene 2016]; 54 (1):116-24. Disponible en: http://onlinelibrary.wiley.com/doi/10.1111/head.12168/pdf.

16. Ashina S, Bendtsen L, Lyngberg AC, Lipton RB, Hajiyeva N, Jensen R. Prevalence of neck pain in migraine and tension-type headache: A population study. Cephalalgia. 2015; 35(3):211–9. doi: 10.1177/0333102414535110.

17. Garza I, Schwedt TJ, Robertson CE, Smith JN. Headache and Other Craniofacial Pain. En: Daroff RB, Mazziotta JC, Jankovic J, Pomeroy SL, eds. Bradley’s Neurology in Clinical Practice, 7th ed. [Internet]. Philadelphia: Saunders Elsevier; 2016. p. 1686-1719 [citado 10 Dic 2016]. Disponible en: https://www.clinicalkey.es/#!/content/book/3-s2.0-B9780323287838001034.

18. Bakar NA, Tanprawate S, Lambru G, Torkamani M, Jahanshahi M, Matharu M. Quality of life in primary headache disorders: a review. Cephalalgia. 2016; 36(1): 67–91. doi: 10.1177/0333102415580099.

19. Neves Da Silva A, Lake III AE. Clinical Aspects of Medication Overuse Headaches. Headache [Internet]. 2014 [citado 10 May 2016]; 54(1): 211-7. Disponible en: http://onlinelibrary.wiley.com/doi/10.1111/head.12223/full.

20. Cámara Lemarroy CR, Rodríguez Gutierrez R, Monreal Robles R, Marfil Rivera A. Gastrointestinal disorders associated with migraine: A comprehensive review. World J Gastroenterol [Internet]. 2016 [citado 30 Ene 2017]; 22(36):8149-60. Disponible en: https://www.wjgnet.com/1007-9327/full/v22/i36/8149.htm.

21. Zebenholzer K, Lechner A, Broessner G, Lampl C, Luthringshausen G, Wuschitz A, et al. Impact of depression and anxiety on burden and management of episodic and chronic headaches – a cross-sectional multicentre study in eight Austrian headache centres. J Headache Pain [Internet]. 2016 [citado 10 Ene 2016]; 17:15. Disponible en: https://link.springer.com/article/10.1186/s10194-016-0603-3.

Published

2018-01-12

How to Cite

1.
Quesada Vázquez AJ. Employment of data mining to predict moderate to severe migraine disability. RM [Internet]. 2018 Jan. 12 [cited 2025 Aug. 5];21(6). Available from: https://revmultimed.sld.cu/index.php/mtm/article/view/667

Issue

Section

ARTÍCULOS ORIGINALES